

Università degli Studi di Firenze Dipartimento di Meccanica e Tecnologie Industriali

Ecomondo 2011 - "LCA in Italia: dall'ecodesign alla gestione del fine vita" Rimini, 09.11.2011

> LCA and ecodesign applications in the automotive field

> > **Massimo Delogu**

Introduction

- Main actors in vehicle design
 - Customer needs, regulation, business strategies
- Factors influencing eco-vehicle design
 - Approach to EcoDesign, LCA of vehicle
 - Technical Factors
- Conclusions

Introduction

- Increasing transport demand vs GDP
 - Strong correlation with economic development
 - 2030+ scenario: Growth of transport demand (passenger)

Gpkm 10000 9000

8000

7000 6000

5000 4000

3000 2000

1000

 Private vehicles: >70%
 of passenger transport activity

- Increasing energy consumption
- Transport: ~25% of total energy consumption in Europe

consumption

 $\sim 20\%$ of total EU GHG emissions and $\sim 30\%$ of CO₂ emissions are linked to the transport sector

Customer awareness and needs

- Vehicle type approval is strictly regulamented!
 - Compliance needed for more than 45 EU Directive and Regulations
 - High cost for development of new vehicles
- Environment
 - Active safety
- Passive safety
- Other
- Lighting and signaling

Source: ACEA, 2009

Two possible different OEMs approaches to demand for sustainable development:

- **1. Reactive**: Fulfilling existing laws, directives and perhaps standards
- 2. **Proactive**: Go beyond existing regulation to become leader and use sustainability aspects as business opportunities

Integration of EcoDesign in product development

• **Eco-Design**: "Integration of environmental aspects into product design and development with the goal to reduce negative environmental impacts of products along their entire life cycles"

EcoDesign integrated approach

- Partially depends on a set of preliminary studies on products (pilotprojects)
- Involves innovation process at all stages (both early stages and late stages)
- Involves strategic management view
- Comprehends cultural tuition
- Requires specific tools and indicators

Vehicle LCA: an example

Source: Schmidt et al, 2004

- USE phase causes main GHG Emission (90% on total life cycle)
 - 2009, new vehicles: 153,3
 gCO₂/km (*Source: T&E 2009*)

How to reduce impact?

- 2012 target: 120 gCO₂/km limit Regulation
 - Energy supply
 - Energy consumption
 - **Technical factors**

- Optimized use of fleet
 - Eco-driving behaviour
 - Increase vehicle occupancy rate

Social factors

GWP reduction for different technologies

CO₂ in g/km: NEDC* WTW for the vehicle and LCA for the e-energy source

	Well to Tank	Tank (batteries) to	Total CO ₂ emissions	
	(batteries)	Wheels		
Conventional ICE Car	25 – 35	120 – 180	145-215	
Electric Vehicle	120-140	0	120-140	
11% nuclear, 20% renewable, 69% fossils (Italian mix 2010)				
Electric vehicle	85-105	0	85-105	
27% nuclear, 20% renewable 53% fossils (EU-27 mix 2010)	6			
Electric vehicle	20-25	0	20-25	
75% nuclear, 20% renewable, 5% fossils				
(French mix 2010)				
Electric vehicle	18-22	0	18-22	
30% PV on-board ,60% other renewables, 10% fossils.	14			
Electric vehicle	8	0	8	
Carbon free communities	5km per kWh and			
Energy 50% PV + 50% wind	40g/kWh		Source: Ertrac, 2009	

Design options VS key factors and constraints

Energy supply

CUNIT

- "Clean" sources
 - Renewable
 - No-Carbon intensive
 - CH_4
 - "Clean" vectors
 - Biofuels
 - Electricity
 - H₂

KEY FACTORS & CONSTRAINTS:

- ✓ Availability
 ✓ Cost
- ✓ Cost
- ✓ Technologies
- ✓ Storage
- technologies
- ✓ Supply
- infrastructure
- ✓ Recyclability
- ✓ Performance
- ✓ Internal space
- ✓ Vehicle size
- ✓ Reliab/Maintain.
- ✓ Safety
- ✓ Materials✓ ...

- Energy conversion & consumption
- "Clean" Engines
 - High eff. ICE
 - Electrification
 - FCV
- Transmission
 - CVT
 - shifting schedules
 - "Clean" Vehicle
 - Weight reduction
 - Aerodynamic shape
 - Low rolling resistance tyres
 - Regenerative braking

ICE HEV PHEV BEV

Ш

Design options VS key factors and constraints

Energy supply

- "Clean" sources
 - Renewable
 - No-Carbon intensive
 - CH_4

"Clean" vectors

- Biofuels
- Electricity
- $-H_2$

KEY FACTORS & CONSTRAINTS:

- ✓ Availability
- ✓ Cost
- ✓ Technologies
- ✓ Storage
- technologies
- ✓ Supply
- infrastructure
- ✓ Recyclability
- ✓ Performance
- ✓ Internal space
- ✓ Vehicle size
- ✓ Reliab/Maintain.
- ✓ Safety
- ✓ Materials✓ …

- Energy conversion & consumption
- "Clean" Engines
 - High eff. ICE
 Electrification
 - FCV
- Transmission
 - CVT
 - shifting schedules
 - "Clean" Vehicle
 - Weight reduction
 - Aerodynamic shape
 - Low rolling resistance tyres
 - Regenerative braking

Design options VS key factors and constraints

Energy supply

NINNA S

- "Clean" sources
 - Renewable
 - No-Carbon intensive
 - CH_4
- "Clean" vectors
 - Biofuels
 - Electricity
 - H₂

KEY FACTORS & CONSTRAINTS:

- ✓ Availability
 ✓ Cost
 ✓ Technologies
 ✓ Storage
 technologies
 ✓ Supply
 infrastructure
 ✓ Recyclability
 ✓ Performance
 ✓ Internal space
- Vehicle size
- ✓ Reliab/Maintain.
- Safety
- ✓ Materials
 ✓ …

- Energy conversion & consumption
- "Clean" Engines
 - High eff. ICE
 - Electrification
 - FCV
- Transmission
 - CVT
 - shifting schedules

"Clean" Vehicle

- Weight reduction
- Aerodynamic shape
- Low rolling resistance tyres
- Regenerative braking

ICE HEV PHEV BEV

LL C

Design options VS key factors and constraints T CUNIT Energy supply **Energy conversion & consumption KEY FACTORS &** Z "Clean" sources ICE **CONSTRAINTS:** "Clean" Engines Renewable HEV ✓ Availability - High eff. ICE No-Carbon LL. ✓ Cost PHEV intensive Electrification ✓ Technologies BEV CH₄ – FCV ✓ Storage technologies Transmission

"Clean" vectors

- **Biofuels**
- Electricity
- H_2

✓ Supply

- infrastructure ✓ Recyclability ✓ Performance ✓ Internal space ✓ Vehicle size ✓ Reliab/Maintain.
- ✓ Safety
- ✓ Materials

√ ...

- - CVT
 - shifting schedules

"Clean" Vehicle

- Weight reduction
- Aerodynamic shape
- Low rolling resistance tyres
- **Regenerative braking**

Mass: the importance of materials

- 10% mass reduction → ~4% fuel consumption reduction
- Problem: vehicle mass increasing due to
 - Costumers expectations (size, comfort, accessories...)
 - More and new components (EES, batteries)
 - Safety reasons (severe crash-test approval for occupants & pedestrians; supplementary systems such as ABS, airbags..)
- Possible solutions
 - Ultra High Strength Steel (thinner, lighter bodies)
 - Lightweight metal: Aluminium, Titanium, Magnesium
 - Plastics, Composites, Nano-reinforced materials, Ecomaterials
 - New technologies

But...

Source: Argonne, 2006

..but, ELV...

- 2000/53/EC Directive: regulation for End-Of-Life Vehicles (ELVs)
- 2015 target: < 5% ELV mass to Disposal
- 95% Recoverability: limitations on material choice
- Non-metal materials: "car fluff" production (~25% vehicle mass)

Materials	2003 ELV (% mass)	2015 ELV (% mass)	2030 ELV	Disposal	
FE-Metal	68%	66%	?	5%	5%
NF-Metal	8%	9%		Recovery 10%	
Plastics	10%	12%			
Rubber	5%	5%			
Glass	3%	2%		Reuse/ Recycle 85%	
Batteries	1%	1%			
Fluids	2%	2%			
Textiles	1%	1%			
Other	2%	2%			
Total	100%	100%		Source: GHK, 2006	

Design for End of Life

- Encourage "Mechanical recycling"
 - Design for Dismantling
 - Easy removal of non-metallic parts
 - Easy removal of fasteners
 - ..
 - Design for Recycling
 - Mono-material components
 - Avoid gluing for different polymers
 - ..
- Optimize material choice in new vehicles
 - Reduce use of thermosets materials
 - Reduce number of polymeric families
 - Reduce PVC
 - Recyclability
 - Cost increasing?
 - Degradation of mechanical behaviour?
 - Loss of perceived quality?

Component	Polymers	kg [%]
Bumper	PP, ABS, PC	10
Seats	PUR, PP, PVC, ABS, PA	13
Dashboard	PP, ABS, PA, PC, PE	15
Fuel systems	PE, POM, PA, PP	7
Interior trim	PP, ABS, PET, POM, PVC	20
Electrical comp.	PP, PE, PBT, PA, PVC	7
Exterior trim	ABS, PA, PBT, ASA, PP	4
Lighting	PP, PC, ABS, PMMA, UP	5
Upholstery	PVC, PUR, PP, PE	8

 Many different drivers are involved in the improvement of vehicle sustainability

- Integration of Ecodesign in the product development is needed
- The use phase of vehicles is the most relevant but the others should not be neglected
- The challenge is to obtain the best compromise among tecnhical solutions, key factors and constraints

Factors influencing eco-vehicle design

Thank you for your attention

Marco Pierini * Massimo Delogu * Lorenzo Berzi* Filippo Romoli*

marco.pierini@unifi.it massimo.delogu@unifi.it lorenzo.berzi@unifi.it filippo.romoli@unifi.it

Università degli Studi di Firenze

*Department of Mechanics and Industrial Technologies Florence, Via S.Marta 3, 50139, Italy

